Hyperglycemia induced damage to mitochondrial respiration in renal mesangial and tubular cells: Implications for diabetic nephropathy
نویسندگان
چکیده
Damage to renal tubular and mesangial cells is central to the development of diabetic nephropathy (DN), a complication of diabetes which can lead to renal failure. Mitochondria are the site of cellular respiration and produce energy in the form of ATP via oxidative phosphorylation, and mitochondrial dysfunction has been implicated in DN. Since the kidney is an organ with high bioenergetic needs, we postulated that hyperglycemia causes damage to renal mitochondria resulting in bioenergetic deficit. The bioenergetic profiles and the effect of hyperglycemia on cellular respiration of human primary mesangial (HMCs) and proximal tubular cells (HK-2) were compared in normoglycemic and hyperglycemic conditions using the seahorse bio-analyzer. In normoglycemia, HK-2 had significantly lower basal, ATP-linked and maximal respiration rates, and lower reserve capacity compared to HMCs. Hyperglycemia caused a down-regulation of all respiratory parameters within 4 days in HK-2 but not in HMCs. After 8 days of hyperglycemia, down-regulation of respiratory parameters persisted in tubular cells with compensatory up-regulated glycolysis. HMCs had reduced maximal respiration and reserve capacity at 8 days, and by 12 days had compromised mitochondrial respiration despite which they did not enhance glycolysis. These data suggest that diabetes is likely to lead to a cellular deficit in ATP production in both cell types, although with different sensitivities, and this mechanism could significantly contribute to the cellular damage seen in the diabetic kidney. Prevention of diabetes induced damage to renal mitochondrial respiration may be a novel therapeutic approach for the prevention/treatment of DN.
منابع مشابه
Mitochondrial reactive oxygen species in the pathogenesis of early diabetic nephropathy
Over the past 40 years, a number of seemingly unrelated mechanisms have been implicated in the early stages of glucose-mediated damage responsible for diabetic complications. Starting in 2000, a series of publications showed that each of these mechanisms reflects a single hyperglycemia-induced process: overproduction of superoxide by the mitochondrial electron transport chain. This discovery cr...
متن کاملHyperglycemia and hyperlipidemia act synergistically to induce renal disease in LDL receptor-deficient BALB mice.
Diabetic nephropathy is the leading cause of end-stage renal disease in Western countries, but only a portion of diabetic patients develop diabetic nephropathy. Dyslipidemia represents an important aspect of the metabolic imbalance in diabetic patients. In this study, we addressed the impact of combined hyperlipidemia and hyperglycemia on renal pathology. Kidneys from wild-type (WT) or LDL rece...
متن کاملHyperglycemia Causes Renal Cell Damage via CCN2-Induced Activation of the TrkA Receptor
CCN2, a secreted profibrotic protein, is highly expressed in diabetic nephropathy (DN) and implicated in its pathogenesis; however, the actions of CCN2 in DN remain elusive. We previously demonstrated that CCN2 triggers signaling via tropomyosin receptor kinase A (TrkA). Trace expression of TrkA is found in normal kidneys, but its expression is elevated in several nephropathies; yet its role in...
متن کاملDickkopf-1 promotes hyperglycemia-induced accumulation of mesangial matrix and renal dysfunction.
Wnt/beta-catenin signaling mediates renal fibrosis in several model systems including diabetic nephropathy. Dickkopf-1 (DKK-1) is an endogenous inhibitor of Wnt/beta-catenin signaling, but whether DKK-1 modulates diabetic nephropathy is unknown. Here, we studied whether DKK-1 participates in high glucose (HG)-induced expression of profibrotic factors and renal damage. In vitro, HG increased exp...
متن کاملEicosapentaenoic acid restores diabetic tubular injury through regulating oxidative stress and mitochondrial apoptosis.
The present study was designed to elucidate a possible mechanism of hyperglycemia-induced tubular injury and to examine a therapeutic potential of dietary eicosapentaenoic acid (EPA) for the prevention of diabetic kidney disease. Utilizing streptozotocin-induced diabetic mice, the extents of albuminuria and histological injuries were monitored at 2 wk after diabetic induction. Reactive oxygen s...
متن کامل